1、π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosα sin(π/2-α)=cosα cos(π/2+α)=-sinα cos(π/2-α)=sinα tan(π/2+α)=-cotα tan(π/2-α)=cotα cot(π/2+α)=-tanα cot(π/2-α)=tanα 2、诱导公式记忆口诀:“奇变偶不变...
公式二:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα 公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα 公式四:利用公式一和公式三可以...
记住“π减、负、π加”这个口诀,可以帮助我们快速记忆诱导公式。观察公式:首先,sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,这说明在π减去角度α时,正弦值保持不变,余弦值变为原来的负值,正切值也变为原来的负值。其次,sin(-α)=-sinα,cos(-α)...
tan(π-x)=-tanx 原理:三角函数值中,正弦一二象限为正,余弦一四象限为正,正切一三象限为正(终边)(5)sin(π/2+x)=cosx cos(π/2+x)=-sinx tan(π/2+x)=-cotx (6)sin(π/2-x)=cosx cos(π/2-x)=sinx tan(π/2-x)=cotx (7)展开公式 sin(3π/2+x)=sin(π+π/2+...
运用三角函数的诱导公式可以解题,诱导公式的口诀是“奇变偶不变,符号看象限”,即相加的值如果是Π/2的奇数倍,就要把sin\cos互相变化,符号看象限指x+Π的象限决定了最后结果的正负。还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的...