分部积分法顺序口诀是“反对幂指三”。分别代指五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。分部积分法是微积分学中的一类重要的、基本的计算积分的方法。它是由微分的乘法法则和微积分基本定理推导而来的。它的主要原理是将不易直接求结果的积分形式,转化为等价的易求出结...
反对幂三指是指反三角函数、对数函数、幂函数、三角函数和指数函数。分部积分顺序是从后往前考虑的.是为了方便记忆简化出来的一句话。这只是使用分部积分法时的简便用法的缩写。分部积分法主要原理是利用两个相乘函数的微分公式,将所要求的积分转化为另外较为简单的函数的积分。例如,对于形如 由于对多项式...
根据组成被积函数的基本函数类型,将分部积分的顺序整理为口诀:“反对幂三指”。分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分。∫ u'v dx = uv - ∫ uv' dx。分部积分:(uv)'=u'v+uv'得:u'v=(uv)'-uv'两边积分得:∫ u'v dx=∫ (uv)' dx - ...
(1)替换 x=tan t, -pi/2
分部积分法的使用需要遵循一定的顺序,通常被总结为一个简洁的口诀:“反对幂指三”。这个口诀分别对应五类基本函数:反三角函数、对数函数、幂函数、指数函数、三角函数的积分。这一顺序的制定基于对这些函数性质的理解及其在分部积分过程中的应用。通过遵循这个顺序,可以更有效地将不易直接求解的积分形式...