一阶微分方程的解法主要可以分为直接分离变量和代换变形两大类。一、直接分离变量 基本思路:将方程中的变量进行直接分离,使等式一边只含有自变量,另一边只含有因变量及其导数,从而积分求解。 适用情况:适用于方程形式较为简单,可以直接通过移项、合并同类项等操作实现变量分离的情况。二、代换变形 基本思...
一阶微分方程求解公式是$$y=y(x)=\intf(x)dx+C$$。一、简述 形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。二、微分 1、微分是一个变量在某个变化过程中的改...
一阶线性微分方程的通解:y'+p(x)y=g(x)。形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一阶导数。线性,指的是方程简化后的每一项关于y、y'的指数为1。一阶线性微分方程的求解一般采用常数变易法,该方法是由法国著名数学家Lag...
一阶微分齐次方程通解公式 1、dy/dx=u+xdu/dx是由复合函数的求导法则而来,y=u(x)x、dy/dx=u(x)+xdu(x)/dx,即:dy/dx=u+xdu/dx。2、令y=ux,对等式两边同微分得:dy=xdu+udx,两边同除dx得:dy/dx=u+xdu/dx。齐次一阶微分方程,是一种数学术语。指在方程中只含有未知函数及其一...
解法一:(全微分法)∵y'=y/(y-x)==>ydx-(y-x)dy=0 ==>(ydx+xdy)-ydy=0 ==>∫(ydx+xdy)-∫ydy=0 ==>xy-y^2/2=C/2 (C是常数)==>2xy-y^2=C ∴此方程的通解是2xy-y^2=C。解法二:(分离变量法)∵令y=xv,则y'=xv'+v。代入原方程,化简得 ==>2dx/x=[1/(...