积分的微分公式是什么?

f(x)= ∫(0->x) (x-t)f(t)dt =x∫(0->x) f(t)dt - ∫(0->x) tf(t)dt f'(x)=∫(0->x) f(t)dt + xf(x)- xf(x)=∫(0->x) f(t)dt
积分的微分公式是什么?
f(x)
= ∫(0->x) (x-t)f(t)dt
=x∫(0->x) f(t)dt - ∫(0->x) tf(t)dt
f'(x)
=∫(0->x) f(t)dt + xf(x)- xf(x)
=∫(0->x) f(t)dt
扩展资料:
性质
通常意义
积分都满足一些基本的性质。以下的 在黎曼积分意义上表示一个区间,在勒贝格积分意义下表示一个可测集合。

线性
积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
所有在 上可积的函数构成了一个线性空间。黎曼积分的意义上,所有区间[a,b]上黎曼可积的函数f和g都满足:
所有在可测集合 上勒贝格可积的函数f和g都满足:
在积分区域上,积分有可加性。黎曼积分意义上,如果一个函数f在某区间上黎曼可积,那么对于区间内的三个实数a, b, c,有
如果函数f在两个不相交的可测集 和 上勒贝格可积,那么
如果函数f勒贝格可积,那么对任意 ,都存在 ,使得 中任意的元素A,只要 ,就有
参考资料:百度百科——积分
2024-01-11
mengvlog 阅读 4 次 更新于 2025-11-04 03:21:22 我来答关注问题0
萌文网在线解答立即免费咨询

公式相关话题

Copyright © 2023 WEN.MENGVLOG.COM - 萌文网
返回顶部