无穷小替换18个公式如下:1、当x→0,且x≠0,则 x~sinx~tanx~arcsinx~arctanx; x~ln(1+x)~(e^x-1); (1-cosx)~x*x/2; [(1+x)^n-1]~nx; loga(1+x)~x/lna;a得x次方~xlna;(1+x)的1/n次方~1/nx(n为正整数)。2、等价无穷小的替换的含义:等价无穷小替换的前提是,...
无穷小替换18个公式
无穷小替换18个公式如下:
1、当x→0,且x≠0,则 x~sinx~tanx~arcsinx~arctanx; x~ln(1+x)~(e^x-1); (1-cosx)~x*x/2; [(1+x)^n-1]~nx; loga(1+x)~x/lna;a得x次方~xlna;(1+x)的1/n次方~1/nx(n为正整数)。
2、等价无穷小的替换的含义:等价无穷小替换的前提是,你所看的未知项(这里指整体,并不一定是x趋近于0)必须趋近0时,才可替换。如果是相加减关系,替换拆开后极限存在,则可拆:不存在,则不可拆,这是要寻求其他途径将其化为相乘关系,再替换。
3、等价无穷小代换求极限的条件是什么:剩下的部分是o(x)是一个未知阶数的无穷小(只知道它比x高阶) 可能是x^2的等价无穷小 这是极限为∞ 也可能是x^3的等价无穷小 这时极限为常数 如果是x^4的等价无穷小 那么极限就是0了。
lim(x→0) ln(1+x)/x=lim(x→0) ln(1+x)^(1/x)=ln[lim(x→0) (1+x)^(1/x)]
由两个重要极限知:lim(x→0) (1+x)^(1/x)=e,所以原式=lne=1,所以ln(1+x)和x是等价无穷小。
等价无穷小是无穷小的一种。在同一点上,这两个无穷小之比的极限为1,称这两个无穷小是等价的。等价无穷小也是同阶无穷小。另一方面来说,等价无穷小也可以看成是泰勒公式在零点展开到一阶的泰勒展开公式。
2024-01-16